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ABSTRACT

Land surface temperature Ts provides essential supplementary information to surface air temperature, the

most widely used metric in global warming studies. A lack of reliable observational Ts data makes assessing

model simulations difficult. Here, the authors first examined the simulated Ts of eight current reanalyses

based on homogenized Ts data collected at ;2200 weather stations from 1979 to 2003 in China. The results

show that the reanalyses are skillful in simulating the interannual variance of Ts in China (r 5 0.95) except

over the Tibetan Plateau. ERA-Interim andMERRA land versions perform better in this respect than ERA-

Interim and MERRA. Observations show that the interannual variance of Ts over the north China plain and

south China is mostly influenced by surface incident solar radiation Rs, followed by precipitation frequency,

whereas the opposite is true over the northwest China, northeast China, and the Tibetan Plateau. This var-

iable relationship is well captured by ERA-Interim, ERA-Interim land, MERRA, and JRA-55. The ho-

mogenizedTs data show a warming of 0.348Cdecade21 from 1979 to 2003 in China, varying between 0.258 and
0.428Cdecade21 for the eight reanalyses. However, the reanalyses substantially underestimate the warming

trend ofTs over northwest China, northeast China, and the Tibetan Plateau and significantly overestimate the

warming trend of Ts over the north China plain and south China owing to their biases in simulating theRs and

precipitation frequency trends. This study provides a diagnostic method for examining the capability of

current atmospheric/land reanalysis data in regional climate change studies.

1. Introduction

Near-surface air temperature Ta provides key evi-

dence for global warming and has been widely used to

study global climate change. The observed global

warming has been mainly attributed to anthropogenic

greenhouse gases. Gradually, scientists and the public

become more interested in climate change in the region

in which they live. The mechanism underlying regional

climate change is more complicated because it is de-

termined by greenhouse gases and multiple feedbacks

(Zhou and Wang 2016a,d). Among them, the effect of

land surface energy feedback on regional climate change

has been studied less frequently and is a more

challenging topic.

Land surface radiation budget is even a stronger de-

termining factor of the evolution of land surface tem-

perature Ts. After the sun rises, the surface is heated by

surface-absorbed solar radiation. To balance the surface-

absorbed radiation, the surface emits longwave radiation,

which is determined by Ts. The surface net radiation is

partitioned into latent and sensible heat fluxes, and the

latter directly warms the air over the surface (Zhou and

Wang 2016c). Surface vegetation coverage and its wet-

ness play an important role in the partitioning of the

surface net radiation and therefore changes of Ta and Ts

at regional scales.

Nowadays, the current reanalysis products have

been widely used in climate studies as important aux-

iliary observations (Thorne and Vose 2010; Dee et al.

2011a). In reanalyses, the energy budget is closely
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associated with Ts (Viterbo and Beljaars 1995; Trigo

et al. 2015). Although the importance of Ts has been

recognized, the accuracy of reanalyzed Ts products

over land is not well understood, mainly because of the

lack of global station-based Ts observations.

The examination of simulated Ts from reanalyzed

models can provide insight into the parameterization

of land surface processes (Wang et al. 2014; Trigo et al.

2015). Using limited station- and satellite-based Ts

observations, several existing studies have revealed

that surface incident solar radiation Rs dominates the

change in Ts and that surface–atmosphere conditions,

including land cover, soil moisture, soil texture, and

the temperature–moisture profile, substantially influ-

ence Ts (Wen et al. 2003; Weng et al. 2004; Xiao and

Weng 2007; Good 2016; Guo et al. 2016).

A few studies have revealed an underestimation of the

diurnal variance in the modeled Ts over sparsely vege-

tated regions (Zeng andDickinson 1998; Yang et al. 2002;

Chen et al. 2010, 2011; Zheng et al. 2012;Wang et al. 2014;

Trigo et al. 2015). Much effort has been put forth to de-

velopTs parameterizations for land surfacemodels. Yang

et al. (2002) reparameterized surface roughness (con-

trolling the latent and sensible heat fluxes) to improve the

available energy partitioning and to further meliorate the

diurnal variance of the modeled Ts over the Tibetan

Plateau and dry land of China (Chen et al. 2010, 2011).

Zeng et al. (2012) improved themodeledTs over bare soil

surfaces by modifying the surface roughness and con-

straining theminimum friction velocity. Apart from these

revisions in land surface model parameterizations, Wang

et al. (2014) indicated that atmospheric forcing data and

assimilation systems have an important impact on the

modeling of Ts.

Zheng et al. (2012) found that the NCEP operational

Global Forecast System (GFS) has a large cold bias in

daytime Ts over the western United States and adopted

new vegetation-dependent formulations of the mo-

mentum and thermal roughness lengths to reduce this

bias. Trigo et al. (2015) found a slight cold bias in day-

time Ts and a warm bias in nighttime Ts for the ECMWF

model. Surface roughness (controlling the latent and

sensible heat fluxes) and surface conductivity (control-

ling the ground heat flux) were revised to substantially

improve the modeled Ts, although the introduction of

realistic vegetation into the model caused a limited im-

provement in the simulated Ts (Trigo et al. 2015).

Prior evaluations and improvements have mainly been

based on comparison of the absolute value of the mod-

eled Ts using only a few Ts observations at a limited

number of stations. Because Ts is not routinely mea-

sured at meteorological stations under the guidance of

the World Meteorological Organization (WMO), Ts

observations are only available for a relatively brief period

at a few stations, for example, from the National Oceanic

and Atmospheric Administration’s Surface Radiation

Budget Network (NOAA SURFRAD) (Augustine et al.

2000), FLUXNET(Baldocchi et al. 2001), and theGEWEX

Asian Monsoon Experiment (GAME/Tibet) (Ma et al.

2006). In China, however, Ts has been routinely measured

since the 1950s, and there are enough availableTs data since

the 1960s at approximately 2200 stations. This makes it

possible to perform a comprehensive assessment of the

modeled Ts in reanalyses, including the climatology, in-

terannual variance, long-term trend, and their controlling

factors.

Reanalyses consist of an assimilation system, forecast

model, and observation data; thus, the error in reanalyzed

outputs is mainly derived from these three components.

The above attempt to revise the parameterizations of the

surface roughness, surface conductivity, and friction ve-

locity has improved the simulation of the absolute value of

Ts, although it remains uncertain whether reanalyses can

reproduce the long-term trend (Thorne and Vose 2010;

Dee et al. 2011a). Thus, the extent to which reanalyses can

represent the observed trend inTs and the factors affecting

the simulated bias in the Ts trend need to be investigated.

This examination of the simulated Ts trend is closely re-

lated to Earth’s surface energy budget and hence to the

simulated capacity of climate change by reanalyses.

A previous work (Zhou andWang 2016b) has utilized

satellite-derived Ts to reveal an underestimation of the

Ts trend from 2002 to 2015 over approximately 70% of

the global desert in the current reanalyses and examined

the relationships between interannual variations of Ts

and atmospheric circulation changes. However, satellite-

retrieved Ts data, based on infrared observations, are

only available under clear sky conditions and are of short

duration.

Using longer datasets that include Ts, Rs, and pre-

cipitation data from 1979 to 2003 at approximately 2200

stations over China, this study further provides a quanti-

tative examination of the reanalyzed Ts, including the

climatology, interannual variances, long-term trends, and

their controlling factors, from eight reanalysis products.

This study quantifies the Ts errors and their dominant fac-

tors in reanalysis products, hence providing a better un-

derstanding of the modeled Ts error sources and indicating

possible improvements for simulating climate change.

2. Data and methods

a. Observation datasets

The latest comprehensive daily dataset, including

land surface temperature Ts, precipitation P, 2-m air
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temperature T, sunshine duration, relative humidity,

and surface pressure from approximately 2400 meteo-

rological stations in China from 1961 to 2014, was ob-

tained from the China Meteorological Administration

(CMA; http://data.cma.cn/data). This dataset has been

subjected to the initial quality control by the CMA,

which includes the identification of outliers, an internal

consistency check, spatial and temporal consistency

checks, artificial checks, and correction of suspected and

erroneous data.

To reduce the effects associated with sampling and

record length, the stations were required to have at least

95% of the record duration at all time scales

(i.e., $28 days per month, $347 days per year, and

$24 years during the study period of 1979–2003). As

a result, approximately 2200 stations met the re-

quirements and were used in this study (supplemental

Fig. S1).

Sunshine duration has been suggested to be the best

variable for reconstructing the long-term surface in-

cident solar radiation Rs based on the revised

Ångström–Prescott Eq. (1) (Yang et al. 2006; Wang

2014; Wang et al. 2015):

R
s
/R

c
5 a

0
1 a

1
(n/N)1 a

2
(n/N)2 , (1)

where n is the measured sunshine duration, N is the

theoretical value of sunshine duration, and Rc is the

daily total solar radiation at the surface under clear

sky conditions. Here, the sunshine duration repre-

sents the period when the direct solar beam irradiance

exceeds 120Wm22. The effects of Rayleigh scatter-

ing, water vapor absorption, and ozone absorption

can be considered in Rc using previously discussed

meteorological observations (Yang et al. 2006; Wang

et al. 2015).

Several intensive studies have reported that Rs de-

rived via sunshine duration can accurately depict the

interannual, decadal, and long-term variances of Rs

(Wang et al. 2012; Wang 2014; Wang et al. 2015). In

addition, thisRs derivation has been shown to accurately

reflect the impact of aerosols and clouds on Rs over

China (Tang et al. 2011; Wang et al. 2012). The derived

Rs is nearly free from the sensitivity drift problem that

commonly plagues Rs observations over China (Wang

2014). More details on the derived Rs can be found in

Yang et al. (2006) andWang et al. (2015). In this study, a

precipitation event is defined as one day with pre-

cipitation of at least 0.1mm.

b. Reanalysis datasets

In the present study, we used the Ts observations to

examine the simulation of Ts in eight current reanalyses,

namely, ERA-Interim (Dee et al. 2011b), ERA-Interim

land (Balsamo et al. 2015), ERA-20C (Poli et al. 2016),

MERRA (Rienecker et al. 2011), MERRA land

(Reichle et al. 2011), NCEP-R1 (Kalnay et al. 1996),

NCEP-R2 (Kanamitsu et al. 2002), and JRA-55

(Kobayashi et al. 2015). More information on the hori-

zontal and temporal resolution of the eight reanalyses is

shown in Table 1.

Reanalyses consist of assimilation system, forecast

model, and observation data. MERRA, NCEP-R1, and

NCEP-R2 adopt three-dimensional variational data as-

similation systems (3D-VAR), whereas ERA-Interim,

ERA-Interim land, ERA-20C, JRA-55, and MERRA

land employ four-dimensional variational data sys-

tems (4D-VAR). ERA-20C only assimilates surface

pressure and marine winds (Poli et al. 2016), and the

other reanalyses assimilate many of the basic upper-air

atmospheric fields, including air temperature, surface

pressure, marine winds, radiosonde moisture, satellite

radiances, and so on, from multiple sources.

The reanalyzed Ts values are pure model calculations

without assimilating Ts observations owing to the lack

of a global Ts observing network (Zhou and Wang

2016c). In a reanalysis land surface model, a skin layer

without heat capacity is assumed to isolate radiative

heating from underlying soil (Viterbo and Beljaars

1995); thus, Ts corresponds to the temperature at the

TABLE 1. Summative information on the reanalyses used in this study. To ensure a consistent length of analysis for all products and

observations, the period of 1979–2003 was selected for all reanalyses except MERRA land, for which the period of 1982–2003 was used

because the forcing data were spurious in 1980 and 1981.

Reanalysis Institution Model resolution Data resolution Period Assimilation system

NCEP-R1 NCEP–NCAR T62 (;210 km) 5/28 3 5/28 1948 and afterward 3D-VAR

NCEP-R2 NCEP–DOE T62 (;210 km) 5/28 3 5/28 1948 and afterward 3D-VAR

MERRA NASA GMAO 1/28 3 2/38 (;55 km) 1/28 3 2/38 1979 and afterward 3D-VAR

MERRA land NASA GMAO 1/28 3 2/38 (;55 km) 1/28 3 2/38 1980 and afterward 4D-VAR

ERA-Interim ECMWF T255 (;80 km) 3/48 3 3/48 1979 and afterward 4D-VAR

ERA-Interim land ECMWF T255 (;80 km) 3/48 3 3/48 1979 and afterward 4D-VAR

ERA-20C ECMWF T159 (;126 km) 3/48 3 3/48 1900–2010 4D-VAR

JRA-55 JMA T319 (;55 km) 5/48 3 5/48 1958–2013 4D-VAR
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interface. The reanalyzed Ts data are physically derived

from the surface–atmosphere energy balance for each

tile during the forecast step of the land surface model

[Eq. (2)] (Viterbo and Beljaars 1995; Viterbo et al.

1999), which links the surface with the lowest model

level through dry static energy and moisture (Best et al.

2004) and thermal contact with a single four-layer soil

profile (or one layer if snow is present) (Dee et al.

2011b). The surface–atmosphere energy balance equa-

tion can be written as

(12f
Rs
)(12a)R

s
1«(R

L
2sT4

s )1H1LE5C
surf

(T
s
2T

0
)

(2)

where fRs is a small fraction of Rs transmitted directly to

surface soil, snow, or ice, a is the surface albedo, « is the

longwave emissivity, s is the Stefan–Boltzmann con-

stant, RL is the downward longwave radiation, and H

and LE are the sensible and latent heat fluxes, re-

spectively. The right-hand side of the equation repre-

sents the ground heat flux through coupling with the

underlying soil, snow, or ice with temperature T0.

Moreover, Csurf is the surface thermal conductivity, and

Ts is the land surface temperature. The area-weightedTs

of each tile is then averaged from the Ts of subtiles;

hence, Ts is a prognostic variable of the land

surface model.

Different reanalyses have specific schemes that might

influence the simulation of Ts, Rs, and precipitation.

NCEP-R2 adopts a simple rainfall assimilation over land

for improving soil wetness to prevent long-term climate

drift of soilwetness (Kanamitsu et al. 2002). TheMERRA

land (ERA-Interim land) Ts is averaged from an offline

land surface model simulation forced by bias-corrected

MERRA (ERA-Interim) reanalysis (primarily for pre-

cipitation), which is considered more accurate for land

surface hydrological studies (Balsamo et al. 2009; Reichle

et al. 2011). Precipitation bias corrections preserve water

balance closure and are vital for improving land model

output (Reichle et al. 2011; Balsamo et al. 2015).

The assimilation of radiosonde temperature–moisture

profiles and satellite radiances facilitates the acquisition

of cloud parameters and the computation of Rs and

precipitation processes (Dee et al. 2011b; Wang et al.

2015; Dolinar et al. 2016). However, the reanalyses do

not allow aerosol loadings to change annually, albeit

an inclusion of their monthly climatologies (Wang

et al. 2015).

c. Method to homogenize the observed time series

Since approximately 2003, the observation infra-

structure has been changed frommanual to automaticTs

measurements. Owing to the absence of snow removal

for automatic observations, a higher temperature might

be obtained from automatic observations. Other prob-

lems related to the observation infrastructure (e.g., in-

strument aging and changes in observing practices) and

station relocations can also lead to false time heteroge-

neity in time series. Therefore, the study period is se-

lected from 1979 to 2003.

To diminish the impact of data homogenization on the

trends in the observed Ts, Rs, and precipitation fre-

quency, we used the RHtestsV4 software package

(Wang and Feng 2013) to detect and homogenize the

breakpoints in the monthly time series. The package

involves two algorithms: the PMTred algorithm is based

on the penalized maximal t test (PMT) with a reference

series (Wang et al. 2007), and the PMFred algorithm is

based on the penalized maximal F test (PMF) without a

reference series (Wang 2008a). The PMFred algorithm

can detect undocumented mean shifts in a time series

with a linear trend using a common-trend two-phase

regression model (Wang 2008a). If the breakpoint is

statistically significant, the quantile-matching (QM)

adjustment in RHtestsV4 is recommended for making

adjustments to the time series (Wang et al. 2010; Wang

and Feng 2013). The QM adjustment aims to match the

empirical distributions from all detrended segments

with the specific base segment (Wang et al. 2010).

Moreover, the QM adjustment also considers a seasonality

of discontinuity, the annual cycle, first-order autoregressive

errors, and the linear trend in the time series (Wang 2008b;

Wang et al. 2010; Wang and Feng 2013). Recently, the

PMTred algorithm with the QM adjustment was success-

fully used to homogenize climatic time series (Dai et al.

2011; Tsidu 2012; Aarnes et al. 2015; Siswanto et al. 2016;

Wang and Wang 2016).

We adopted the PMFred algorithm to detect break-

points at each station. As such, 714 out of 2223 (30.2%)

stations have significant breakpoints at a confidence level

of 95% for the Ts time series and 804 out of 2223 (36.2%)

stations for Rs (Fig. S1). Moreover, 1268 (57%) stations

have significant breakpoints for theTs orRs time series; an

additional 955 (43.0%) stations have original homoge-

nized data (Fig. S1). Considering the change in the ob-

serving instrumentation around 2003, we selected the

longest available segment from 1979 to 2003 as the base

segment and used the QM adjustment to adjust the sig-

nificant breakpoint at a confidence level of 95%. More-

over, we preliminarily inspected the detected breakpoints

with limited station information.

d. Trend calculation and partial linear regression

We interpolated the reanalyzed datasets from differ-

ent spatial resolutions (Table 1) onto the observed sites

7382 JOURNAL OF CL IMATE VOLUME 30



using bilinear interpolation (i.e., a linear interpolation

function on two-dimensional grids). When calculating

the regional values, we averaged the station data inside

18 3 18 grids using an area-weighted average method to

minimize the impact of the heterogeneous distribution

of the sites.

To assess the performance of the reanalyzed Ts, the

bias, root-mean-square error (RMSE), standard de-

viation (STD), and correlation coefficient r were

used. Furthermore, we compared the trend in the

reanalyzed Ts with the observed trend:

y5 at1 b1 « , (3)

where y is the reanalyzed or observed Ts, Rs, and pre-

cipitation frequency anomaly relative to the reference

period of 1981 to 2000, a is the corresponding trend, t is the

year, b is the intercept when t 5 0, and « is the equation

error. This equation is treated using the ordinary least

squares method and the two-tailed Student’s t test.

Pearson correlation analysis is often used to reveal

the relationship between two variables. However,

several of the environmental variables may be linearly

covariant with one another (e.g., 48% of the variance in

Rs might be accounted for by precipitation frequency

over China). The partial least squares approach is a

widely applied statistical tool to isolate the relationship

between two variables from the confounding effects of

several correlated variables (Wold et al. 1984; Radok

and Brown 1993; Beer et al. 2010; Carvalhais et al.

2014). In evaluating the relationship between Ts and Rs

or precipitation frequency, we used partial least

squares to statistically exclude the confounding effects

of the other variable:

r
(x,y)jz 5

r
x,y

2 r
x,z
r
y,zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(12 r2x,z)(12 r2y,z)
q , and (4)

slope
(x,y)jz 5

s
y

s
x

r
x,y

2 r
y,z
r
x,z

12 r2x,z
, (5)

where r(x,y)jz and slope(x,y)jz are the partial correlation

coefficient and partial regression coefficient, re-

spectively, between the detrended Ts and Rs or pre-

cipitation frequency after controlling for the detrended

precipitation frequency or Rs; rx,y, rx,z, and ry,z are the

correlations between the detrended Ts and Rs, Ts and

precipitation frequency, and Rs and precipitation fre-

quency, respectively; and sy and sx are the standard

deviations of the detrended Ts and Rs or precipitation

frequency. The use of the detrended time series in the

above Pearson and partial linear correlation and re-

gression analysis instead of the original nonstationary

time series provides a robust estimate of their relationship

(Veizer et al. 2000; Zhou et al. 2007; Podobnik and

Stanley 2008).

To evaluate the potential collinearity of the in-

dependent variables in the models, we calculated the

variance inflation factor (VIF). The VIF for Rs and

precipitation frequency were less than 4; that is, VIF of

1.90, 3.09, 1.40, 1.48, 3.12, and 2.34 are obtained over

China, northwest China, the Tibetan Plateau, northeast

China, the north China plain, and south China, re-

spectively, much less than the threshold of 10, above

which the collinearity of models is bound to adversely

affect the regression results (Ryan 2008).

3. Results

a. Climatology and bias in land surface temperature

Figure 1 illustrates the bias in Ts from the raw obser-

vations and the eight reanalyses relative to the homoge-

nized observations over China. The eight reanalyses

roughly underestimate the absolute value ofTs except for

ERA-Interim land and ERA-20C over the heart of the

north China plain (Fig. 1). The underestimation of Ts in

the reanalyses is largest over the Tibetan Plateau (210.898
to 25.448C), followed by northwest China (25.848
to 21.848C) and south China (24.218 to 22.818C), and
endingwith the northChina plain (23.458 to21.438C) and
northeast China (22.978 to21.368C) (Fig. 1 and Table 2).

The raw Ts observations must be adjusted at more than

30% (714/2223) of the stations, especially over central

China (Fig. 1). However, a small adjustment of 0.218C
from the raw Ts observations over 30% of the stations is

insufficient for canceling the underestimation of Ts by the

reanalyses (Fig. 1). Overall, the eight reanalyses have dif-

ferent simulation capacities for the absolute values of Ts

(Fig. 1 and Table 2). ERA-Interim land has the best

simulation capacity for the absolute value of Ts, while

ERA-20C, NCEP-R1, and NCEP-R2 are the worst in

this regard.

The reanalyses rationally reproduce the seasonal

cycle of Ts, although they have a larger un-

derestimation in summer than in winter (Fig. 2), which

is consistent with the evaluated results of reanalyzed

Ts using observations from the U.S. Climate Refer-

ence Network (USCRN) stations and MODIS Ts

products (Zhou and Wang 2016b). This un-

derestimation likely results from a combination of

vegetation growth and an increase in Rs in summer

with the addition of a larger overestimated pre-

cipitation frequency in summer (than in winter) in the

reanalyses (Zhou and Wang 2017).

The underestimated Ts might directly influence the

simulation of surface air temperature. Ma et al. (2008)
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reported that ERA-40, NCEP-R1, and NCEP-R2 under-

estimated surface air temperature in China with a maxi-

mum cooling bias in most of western China and suggested

that NCEP-R1 had the worst performance. Our simula-

tion results for Ts are very similar to their results and

provide a plausible explanation for the underestimated

surface air temperature in the reanalyses. Several previous

studies have presented a very small bias in Ta in ERA-

Interim (Decker et al. 2012; Wang and Zeng 2012; Zhou

andWang 2016c), which is consistent with the result forTs.

Wang and Zeng (2015) illustrated a larger simulated un-

derestimation of Ta in summer than in winter from simu-

lations using ERA-Interim, MERRA, and NCEP-R1,

which is reflected by the Ts simulation in nature (Fig. 2).

TABLE 2. Bias (8C) in land surface temperature Ts from 1979 to 2003 over China and its five subregions from ERA-Interim, ERA-

Interim land, ERA-20C, MERRA, MERRA land, NCEP-R1, NCEP-R2, JRA-55, and raw observations relative to homogenous ob-

servations. The time span of MERRA land starts in 1982 because of false input forcings in 1980 and 1981.

China Northwest China Tibetan Plateau Northeast China North China plain South China

ERA-Interim 23.72 23.29 27.78 22.03 22.70 23.79

ERA-Interim land 22.50 21.88 25.44 21.36 21.43 22.81

ERA-20C 23.89 23.02 210.89 22.43 21.51 23.55

MERRA 23.29 21.84 27.26 22.97 22.06 23.30

MERRA land 23.46 22.47 26.90 22.82 22.32 23.46

NCEP-R1 24.81 25.84 210.03 22.79 23.45 24.21

NCEP-R2 24.42 25.82 28.93 22.12 22.75 24.19

JRA-55 23.31 23.78 27.38 21.41 22.25 22.76

Obs-raw 0.05 0.03 0.01 0.03 0.09 0.06

FIG. 1. Bias in land surface temperature Ts (8C) from 1979 to 2003 based on the eight reanalysis products: (a) raw observations, (b) ERA-

Interim, (c) ERA-Interim land, (d) ERA-20C, (e) MERRA, (f) MERRA-land, (g) JRA-55, (h) NCEP-R1, and (i) NCEP-R2 relative to ho-

mogenous observations.The squareplot is from theoriginal homogenous time series; the dot plot is from theQM-adjustedhomogenous time series

[e.g., the green dots in (a) are from the QM-adjusted time series]. Based on topography and the Qinling Mountain–Huaihe River line, China is

divided into five subregions, namely, northwest China, the Tibetan Plateau, northeast China, the north China plain, and south China.
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b. Interannual variability of land surface temperature

In this study, we paid more attention to the in-

terannual variability and trend of Ts than to its clima-

tology. Figure 3 shows Taylor diagrams of the observed

and reanalyzed annual Ts anomalies over China and its

five subregions. We found that the correlations between

these reanalyzed and observed annual Ts anomalies are

relatively strong (Fig. 3). Among them, NCEP-R1 and

NCEP-R2 have relatively weak correlations (0.1 and 0.4,

respectively) over the Tibetan Plateau.

ERA-Interim, JRA-55, ERA-Interim land, MERRA,

and MERRA land perform well in terms of the simu-

lated Ts anomaly over China (r5 0.95; RMSE 5 0.18C)
(Fig. 3a) and its subregions (r 5 0.9; RMSE50.28C)
(Figs. 3b–f). ERA-20C always presents a large standard

FIG. 2. (left) The 1981 to 2000 climatology and (right) the bias land surface temperature Ts

from the eight reanalysis products from 1979 to 2003 over China, northwest China, the

Tibetan Plateau, northeast China, the north China plain, and south China relative to the

homogeneous Ts observation.
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deviation in Ts and hence a large RMSE over China and

its subregions (Fig. 3), which likely results from less as-

similation of multiple observations and incomplete pa-

rameterization schemes (Poli et al. 2016).

Compared with the Ts from ERA-Interim and

MERRA, the Ts from the land surface products (i.e.,

ERA-Interim land and MERRA land) have a smaller

standard deviation and RMSE (Fig. 3), maybe because

the offline land surface models merge the observed

precipitation dataset and hence improve the partit-

ioning of available energy over land (Reichle et al.

2011; Balsamo et al. 2015). In addition, Ts over south

China is depicted most accurately by the reanalyses

(Fig. 3).

FIG. 3. Taylor diagrams for the annual time series of the observed and reanalyzed land

surface temperature anomalies Ts from 1979 to 2003 in China. The correlation coefficient,

standard deviation, and RMSE are calculated against the observed Ts anomaly.
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c. Relationship of land surface temperature to surface
incident solar radiation and precipitation frequency

This section will discuss the relationship of Ts

againstRs and precipitation frequency. In physics, theRs

heats the surface, largely determining the variability

of the Ts at various temporal scales. In turn, the Ts con-

trols the surface-emitted longwave radiation (Wang and

Dickinson 2013). Existing studies suggested that pre-

cipitation frequency is a better factor in quantifying in-

terannual variability of soil moisture over China than

precipitation amount (Piao et al. 2009; Wu et al. 2012)

and then in reflecting vegetation growth and surface

characteristics (e.g., surface albedo and roughness).

These changes would alter the partitioning of available

energy for regulating the change in Ts. Additionally,

upper-air raindrops (Fujita 1959; Chen and Wang 1995)

or synoptic advection (Trenberth and Shea 2005; Wei

et al. 2014) associated with precipitation events also have

an inevitable impact on the Ts. We therefore used pre-

cipitation frequency instead of precipitation amount in

this study. Our following results show that precipitation

FIG. 4. Compositemap of the partial correlation coefficients ofTs against the surface incident solar radiationRs and precipitation frequency. To

avoid a spurious correlation, the detrended time series were used to estimate the partial correlation for 1979 to 2003 from the eight reanalysis

products and observations: (a) homogenous observations, (b) raw observations, (c) ERA-Interim, (d) ERA-Interim land, (e) ERA-20C,

(f) MERRA, (g) MERRA-land, (h) JRA-55, (i) NCEP-R1, and (j) NCEP-R2. We found that homogenization has only a slight impact on the

relationship between Ts and Rs or precipitation frequency.
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frequency is a good indicator in reflecting precipitation

impact on interannual variability and trend of Ts.

Although the seasonal cycle of vegetation coverage

impacts the simulated values of Ts, current reanalyses

do not allow vegetation to change annually. The Ts is

measured over the exposed soil surface that does

change with time. Therefore, interannual relationships

between Rs (or precipitation frequency) and Ts are

expected to be similar in the model and observations.

Our results below confirmed this inference. Figures 4

and 5 illustrate the partial relationships between the

annual Ts and Rs anomalies (after controlling for the

precipitation frequency) and the precipitation fre-

quency (after controlling for Rs). The homogenization

of the data has only a slight impact on the partial re-

lationship of Ts with Rs and the precipitation frequency

(Figs. 4 and 5).

In the observations, the interannual variance of Ts is

primarily regulated by the precipitation frequency and

secondarily by Rs over northwest China, northeast

China, and the Tibetan Plateau (Figs. 4, 5, and 6).

ERA-Interim, ERA-Interim land, and MERRA can

FIG. 5. Composite map of the partial regression coefficients of Ts against the surface incident solar radiation Rs {by controlling for the

precipitation frequency [8C (Wm22)21]} and precipitation frequency {by controlling forRs [8C (days)21]}. To avoid a spurious correlation

relationship, the detrended time series were used to estimate the partial correlation for 1979 to 2003 from the eight reanalysis products:

(a) homogenous observations, (b) raw observations, (c) ERA-Interim, (d) ERA-Interim land, (e) ERA-20C, (f) MERRA, (g) MERRA-

land, (h) JRA-55, (i) NCEP-R1, and (j) NCEP-R2. We found that homogenization has only a slight impact on the relationship between

Ts and Rs or precipitation frequency.
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roughly simulate the observed relationships (Figs. 4, 5,

and 6). However, ERA-20C, JRA-55, NCEP-R1, and

NCEP-R2 present inaccurately negative partial re-

lationships between Ts and Rs over northwest China

and northeast China (Figs. 4, 5, and 6). ERA-20C,

NCEP-R2, and JRA-55 present even stronger negative

correlation and regression coefficients between Ts and

precipitation frequency than the observations over

northeast China (Figs. 4, 5, and 6). MERRA land

overestimates the positive correlation and regression

FIG. 6. Regional averages of the partial correlation and regression coefficients of Ts against (a),(b) the

surface incident solar radiation Rs (by controlling for the precipitation frequency; units: 1 and 8C/Wm22) and

(c),(d) precipitation frequency (by controlling for Rs; units: 1 and 8C/days) over China and its five subregions

including the Tibetan Plateau, northwest China, northeast China, the north China plain, and south China. The

partial regression was conducted after detrending the time series. The error bars denote the standard deviations of

the correlation and regression coefficients.
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coefficients between Ts and Rs and underestimates

those between Ts and the precipitation frequency over

the Tibetan Plateau, northwest China, and northeast

China (Figs. 4, 5, and 6). In addition, none of the eight

reanalyses can reproduce the observed positive partial

relationship between Ts and Rs over the Tibetan

Plateau, especially ERA-20C, NCEP-R1, and NCEP-

R2 (Figs. 4, 5, and 6).

According to the observations, the interannual variance

of Ts is dominated by Rs and secondarily influenced by the

precipitation frequency over the north China plain and

southChina (Figs. 4, 5, and 6).ERA-Interim,ERA-Interim

TABLE 3. Trends (8Cdecade21) in land surface temperature Ts from 1979 to 2003 over China and its five subregions from homogeneous

observations (Obs-homo), raw observations (Obs-raw), ERA-Interim, ERA-Interim land, ERA-20C, MERRA, MERRA land, NCEP-

R1, NCEP-R2, and JRA-55. The time span of MERRA land starts in 1982 because of false input forcings in 1980 and 1981. The bold font

indicates a two-tailed Student’s t test with a significance level of 0.05.

China Tibetan Plateau Northwest China Northeast China North China plain South China

Obs-homo 0.34 0.32 0.53 0.57 0.29 0.17

Obs-raw 0.42 0.39 0.56 0.61 0.44 0.27
ERA-Interim 0.35 0.24 0.25 0.58 0.48 0.27

ERA-Interim land 0.25 0.11 0.06 0.43 0.35 0.24

ERA-20C 0.42 0.39 0.28 0.67 0.44 0.37

MERRA 0.28 0.32 0.12 0.55 0.29 0.20
MERRA land 0.30 0.32 0.15 0.40 0.30 0.32

NCEP-R1 0.29 20.09 0.37 0.47 0.46 0.22

NCEP-R2 0.30 20.26 0.54 0.48 0.43 0.24

JRA-55 0.33 0.38 0.06 0.57 0.52 0.25

FIG. 7. Land surface temperature Ts (8C decade21) trend maps for 1979 to 2003 from the homogenous observations and the eight

reanalysis products: (a) homogenous observations, (b) ERA-Interim, (c) ERA-Interim land, (d) ERA-20C, (e) MERRA, (f) MERRA-

land, (g) NCEP-R1, (h) NCEP-R2, and (i) JRA-55. The histogram on the inside right of each panel is the probability distribution function

of all trends, and the black stairs are integrated from the trends with a significance level of 0.05 (based on a two-tailed Student’s t test). The

histogram bins correspond to the 40 equal quantities denoted in the color bar.
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land, ERA-20C, and JRA-55 rationally capture the ob-

served relationships over the north China plain and south

China (Figs. 4, 5, and 6). MERRA and MERRA land can

represent the observed relationships over the North China

Plain, and NCEP-R2 can represent the observed relation-

ships over south China (Figs. 4, 5, and 6). However,

MERRA, MERRA land, and NCEP-R1 exhibit smaller

correlation and regression coefficients between Ts and

Rs over south China than those from the observations

(Figs. 4, 5, and 6). The same situation occurs over the north

China plain forNCEP-R1andNCEP-R2 (Figs. 4, 5, and 6).

Overall, the observations show that the correlation

and regression coefficients between Ts and Rs over hu-

mid regions (i.e., the north China plain and south China)

are larger than those over arid and semiarid regions (i.e.,

northwest China, northeast China, and Tibetan Pla-

teau), although the correlation and regression co-

efficients between Ts and the precipitation frequency

over humid regions are smaller than those over arid and

semiarid regions (Figs. 4, 5, and 6).

d. Land surface temperature trend

Figure 7 shows amap of theTs trend from homogenous

observations and the eight reanalyses from 1979 to 2003

over China. The Ts exhibits a strong warming trend of

0.348Cdecade21 (p value from significance t test,

p , 0.05) according to the observations and 0.298–
0.428Cdecade21 (p , 0.05) according to the eight re-

analyses over China (Fig. 7 and Table 3).

However, the averaged trends across a large territory

may mask regionally different values, reflecting diverse

climate change trends and effects. Moreover, there is

a stronger observed warming of Ts over northeast

China (0.578Cdecade21; p , 0.05), northwest China

(0.538Cdecade21; p , 0.05), and the Tibetan Plateau

(0.328Cdecade21; p, 0.05) (Fig. 7 and Table 3). Among

the eight reanalyses, the increases in Rs and the de-

creases in precipitation frequency result in the strong

warming over northeast China (Fig. 7 and Figs. S2 and

S3). However, the eight reanalyses generally underestimate

the Ts trend over these regions: 0.408–0.588Cdecade21

(p , 0.05) over northeast China, 0.068–0.378Cdecade21

over northwest China, and 20.268–0.398Cdecade21 over

theTibetanPlateau (Fig. 7 andTable 3).Especially over the

TibetanPlateau,NCEP-R1andNCEP-R2present negative

trends of20.098 and20.268Cdecade21, respectively (Fig. 7

and Table 3), which contributed to the failure of NCEP-

R1 to simulate surface air temperature trends over the

Tibetan Plateau (You et al. 2010; Wang and Zeng 2012).

Furthermore, Ts displays an observed warming of

0.298Cdecade21 (p , 0.05) over the north China plain

and 0.178Cdecade21 (p , 0.05) over south China.

FIG. 8. As in Fig. 7, but for trend differences in the land surface temperature Ts (8C decade21).
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Among the eight reanalyses, the decreases in Rs and

precipitation frequency result in the relatively weak

warming over these regions (Fig. 7 and Figs. S2 and S3).

However, the reanalyses overestimate the Ts warming

trends over these regions [i.e., 0.298–0.528Cdecade21

(p , 0.05) over the north China plain and 0.208–
0.378Cdecade21 (p , 0.05) over south China] because

the reanalyses ignored the canceled effect of the in-

creasing aerosol loading (Wang et al. 2015).

We further examined the impact of data homogeni-

zation on the Ts trend. The Ts trends derived from the

original dataset are always higher than those from the

homogenous dataset, especially over the north China

plain and south China (Fig. 8a and Table 3). This in-

dicates that the homogenization might adjust the

breakpoints in the time series (Wang 2008a) and help to

objectively depict the Ts trend, which advances the as-

sessment of the modeled Ts trend in the reanalyses.

e. Contribution of surface incident solar radiation and
precipitation frequency to land surface temperature
trend biases

Figure 8 shows the trend differences in Ts between the

eight reanalyses and the homogenous observation. The

overall pattern in the trend in Ts is underestimated over

the Tibetan Plateau and northwest China and over-

estimated over the north China plain and south China

(Fig. 8). Evidently, the Rs trends (Fig. 9) over the north

China plain, south China, and northeast China are

overestimated by the eight reanalyses, which primarily

explains the overestimated Ts trend over the north

China plain, south China, and part of northeast China;

for example, the spatial pattern correlation between the

Ts trend difference and the Rs trend differences is up to

0.77 (p , 0.05) over these regions (Figs. 8 and 9). The

additional increased Rs trends will heat the land surface

and make the Ts trend larger in the reanalyses than in

the observations.

The trends in the precipitation frequency are

overestimated over northwest China and the Tibetan

Plateau and underestimated over northeast China,

the north China plain, and south China in the eight

reanalyses (Fig. 10). This pattern of differences in

precipitation frequency trends substantially explains

the underestimated Ts trend over northwest China and

the Tibetan Plateau and the overestimated Ts trend

over the north China plain, south China, and part of

northeast China; for example, the spatial pattern cor-

relation of the Ts trend difference against the Rs trend

FIG. 9. As in Fig. 7, but for trend differences in the surface incident solar radiation Rs [(Wm22) decade21].
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differences is up to 0.61 ( p , 0.05) over China (Figs. 8

and 10). These overestimated trends in the pre-

cipitation frequency may contribute to an over-

estimation of soil surface moisture, allowing, therefore,

more available energy for the latent heat flux and in

turn leading to surface cooling (Jung et al. 2010; Wang

and Dickinson 2012).

By integrating the relationship for the trend biases in

Ts with those of Rs and the precipitation frequency over

China and its five subregions (Fig. 11), it was found that

the underestimated Ts trends in the reanalyses mainly

result from the overestimated trends in the precipitation

frequency and the underestimated trends in Rs over the

Tibetan Plateau and northwest China, whereas the

overestimatedTs trends in reanalyses mainly result from

the overestimated trends in Rs over the north China

plain and south China.

We further quantified the contribution of the

trend biases inRs and the precipitation frequency to those

in Ts in the eight reanalyses. Over northwest China and

northeast China, the trend biases in Rs (precipitation fre-

quency) can explain 56.3% (40.2%) of the trend biases in

Ts in the reanalyses (Fig. 12). The trend biases in Ts are

more largely explained by the trend biases in Rs than

precipitation frequency because partial sensitivity of Ts to

Rs is more greatly overestimated by reanalyses than to

precipitation frequency (Fig. 5). Over the north China

plain and south China, the trend biases inRs (precipitation

frequency) can explain 35.1% (26.3%) of the trend biases

inTs in the reanalyses (Fig. 12). Moreover, the sensitivities

of the trend biases in Ts to the trend biases in Rs (pre-

cipitation frequency) by 0.145 (8Cdecade21)/[(Wm22)

decade21] [20.022 (8Cdecade21)/(days decade21)] over

arid and semiarid regions are significantly larger than

those over humid regions, that is, 0.034 (8Cdecade21)/

[(Wm22)decade21] [20.013 (8Cdecade21)/(daysdecade21)]

(Fig. 12).

The precipitation frequency might influence Rs

through frequent cloud cover (Bony et al. 2015; Norris

et al. 2016; Zhou et al. 2016); therefore, we further

removed the collinearity of the trend in Rs and

the precipitation frequency while quantifying their

contribution to the trend biases in Ts. Following this

manipulation, the trend differences in Rs (precipitation

frequency) can independently explain 45.2% (13.3%)

of the trend biases in Ts in the reanalyses over arid and

semiarid regions, whereas the trend differences in Rs

(precipitation frequency) can independently explain

26.8% (10.8%) of the trend biases in Ts in the re-

analyses over humid regions.

FIG. 10. As in Fig. 7, but for trend difference in the surface precipitation frequency (days decade21).
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In addition, the remaining part of the trend biases in

Ts in the reanalyses might be explained by different

land surface parameters, including the surface rough-

ness, surface conductivity, friction velocity, turbulent

exchange coefficients, vegetation growth, and so forth

(Zeng and Dickinson 1998; Veizer et al. 2000; Yang

et al. 2006; Zeng et al. 2012; Wang 2014; Zhou and

Wang 2016c,e).

4. Conclusions and discussion

The Ts is one of the most important parameters reg-

ulating the energy exchange and budget between

Earth’s atmosphere and surface, including latent and

sensible heat fluxes and longwave radiation, which are

closely relevant to climate change. Several previous

studies have revealed an underestimation of the diurnal

variance in the modeled Ts over sparsely vegetated re-

gions; much effort has been exerted to reduce this bias

(Zeng and Dickinson 1998; Yang et al. 2002; Trigo and

Viterbo 2003; Chen et al. 2010, 2011; Zeng et al. 2012;

Zheng et al. 2012; Wang et al. 2014; Trigo et al. 2015).

However, a lack of long-term Ts observations hinders

the assessment and improvement of land surface models

in reanalyses and hence our understanding of land–

atmosphere processes.

FIG. 11. Trend biases in the (a) land surface temperatureTs (8Cdecade21), (b) surface incident solar radiationRs

[(Wm22) decade21], and (c) precipitation frequency (days decade21) for 1979 to 2003 from the eight reanalysis

products (ERA-Interim,ERA-Interim land,ERA-20C,MERRA,MERRA-land, JRA-55,NCEP-R1, andNCEP-R2)

relative to the homogenous observations over China, the Tibetan Plateau, northwest China, northeast China, the

north China plain, and south China. The error bars denote a 95% confidence interval.
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In this study, using long-term Ts observation from

1979 to 2003 at approximately 2200 stations over China,

we first comprehensively examined simulated Ts, in-

cluding the climatology, interannual variances, long-

term trend, and their controlling factors, from eight

reanalyzed products. The Ts is underestimated in the

eight reanalyses, and the underestimation is the largest

over the Tibetan Plateau (210.898 to 25.448C). ERA-

Interim land and ERA-20C slightly overestimate Ts

over the heart of the north China plain mainly because

of less aerosol loading in the reanalyses. In regard to the

absolute value of Ts, ERA-Interim has the best simu-

lation capacity, whereas ERA-20C, NCEP-R1, and

NCEP-R2 give the worst performance.

The reanalyses are skillful in simulating the in-

terannual variance of the Ts anomaly (r 5 0.95 and

RMSE 5 0.18C) over China except over the Tibetan

Plateau. ERA-Interim and MERRA land perform

better in this aspect than ERA-Interim and MERRA.

The interannual variance of Ts is dominated by Rs

(having large partial correlation and regression co-

efficients) and secondarily influenced by the pre-

cipitation frequency over the north China plain and

south China, whereas it is primarily regulated by the

precipitation frequency (having large partial correla-

tion and regression coefficients) and secondarily by

Rs over northwest China, northeast China, and the

Tibetan Plateau. The interannual domination of Ts is

well captured by ERA-Interim, ERA-Interim land,

MERRA, and JRA-55.

The Ts observations present a strong warming trend

over China (0.348Cdecade21). However, the Ts trend is

consistently underestimated by the reanalyses over

northwest China, the Tibetan Plateau, and part of

northeast China and overestimated over the north

China plain and south China. We further found that

the trend biases in Rs (precipitation frequency) can

explain 56.3% (40.2%) of the trend difference in Ts in

the reanalyses over northwest China and northeast

China and 35.1% (26.3%) of the trend biases in Ts in

the reanalyses over north China plain and south

China. After removing the collinearity of Rs and the

precipitation frequency, the trend biases in Rs (pre-

cipitation frequency) can independently explain 45.2%

(13.3%) of trend biases in Ts in the reanalyses over arid

and semiarid regions and 26.8% (10.8%) of trend biases in

Ts in the reanalyses over humid regions. Moreover, the

sensitivities of the trend differences in Ts to the trend

biases in Rs (precipitation frequency) over arid and semi-

arid regions are significantly larger than those over humid

regions.

Previous studies have mainly focused on the revision

of land surface parameterizations, including the surface

roughness, surface conductivity, and so forth, to improve

the modeled Ts in reanalyses (Zeng andDickinson 1998;

Veizer et al. 2000; Yang et al. 2006; Zeng et al. 2012;

Wang 2014). This study shows the importance of Rs and

precipitation frequency in determining the variability of

Ts, which should be studied in the near future.

FIG. 12. Scatterplot of the trend biases in the land surface tem-

perature Dtrend(Ts) (8Cdecade21) against those of the (a) surface

incident solar radiation Dtrend(Rs) [(Wm22) decade21] and

(b) precipitation frequency Dtrend(precipitation frequency)

(days decade21) for 1979 to 2003 from the eight reanalysis prod-

ucts: ERA-Interim, ERA-Interim land, ERA-20C, MERRA,

MERRA-land, NCEP-R1, NCEP-R2, and JRA-55, relative to the

homogenous observations over China, the Tibetan Plateau,

northwest China, northeast China, north China plain, and South

China. The red (blue) lines with the 95% confidence dashed

boundary in (a) and (b) are from the ordinary least squares re-

gression ofDtrend(Ts) againstDtrend(Rs) andDtrend(precipitation
frequency), respectively, over the north China plain and south

China (northwest China and northeast China). The corresponding

regression slopes and R2 values are listed.
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