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ABSTRACT

Knowledge of the evaporative fraction (EF: the ratio of latent heat flux to the sum of sensible and latent

heat fluxes) and its controls is particularly important for accurate estimates of water flux, heat exchange, and

ecosystem response to climatic changes. In this study, the biological and environmental controls on monthly

EF were evaluated across 81 AmeriFlux sites, mainly in North America, for 2000–12. The land-cover types of

these sites include forest, shrubland, grassland, and cropland, and the local climates vary from humid to arid.

The results show that vegetation coverage, indicated by the normalized difference vegetation index (NDVI),

has the best agreement with EF (site-averaged partial correlation coefficient r 5 0.53; significance level p ,
0.05) because of vegetation transpiration demand. Theminimumair temperature is closely related to EF (site-

averaged r 5 0.51; p , 0.05) because of the inhibition of respiratory enzyme activity. Relative humidity, an

indicator of surface aridity, shows a significant positive correlation with EF (site-averaged r5 0.46; p, 0.05).

The impacts of wind speed and diurnal air temperature range on EF depend on land-cover types and are

strong over grasslands and cropland. From these findings, empirical methods were established to predict

monthly EF using meteorological data and NDVI. Correlation coefficients between EF estimates and ob-

servations range from 0.80 to 0.93, with root-mean-square errors varying from 0.09 to 0.12. This study

demonstrates the varying controls on EF across different landscapes and enhances understanding of EF and

its dynamics under changing climates.

1. Introduction

Evaporative fraction (EF) is the ratio of latent heat

flux LE (in energy units of watts per meter squared) to

the available energy (the difference between surface net

radiation Rn and ground heat flux G) or to the sum of

sensible heat flux H (also in energy units of watts per

meter squared) and LE at the land surface, as shown in

Eq. (1):
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Global circulation models, agricultural-management

applications, and drought monitoring require estimates

of LE and EF (Kustas and Anderson 2009; Shuttleworth

2007). Various empirically and physically based methods

to estimate LE with different degrees of accuracy and

complexity have been developed on the basis of ei-

ther Monin–Obukhov similarity theory (MOST) or the

Penman–Monteith equation (Wang andDickinson 2012),

typically with errors on the order of 15%–30% (Jiang

et al. 2004; Kalma et al. 2008).

The Penman–Monteith equation has been recom-

mended by the Food and Agriculture Organization of

the United Nations as a standard method to calculate

LE (Allen et al. 1998, pp. 17–28 and 65–77). The

Penman–Monteith equation requires Rn and G, which

are not measured routinely and are unavailable at

regional or global scale, thus limiting its application.

Furthermore, the Penman–Monteith equation needs

canopy resistance rc, which is difficult to measure di-

rectly (Wang and Dickinson 2012).

Therefore, many studies have tried to simplify the

Penman–Monteith equation (Bailey et al. 1993; Kra

2010; Priestley and Taylor 1972; Rivas and Caselles

2004; Valiantzas 2006, 2013). One of the most widely

used simplifications, the Priestley and Taylor equation,
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can be used to calculate LE under adequate moisture

conditions (Priestley and Taylor 1972). The Priestley

and Taylor equation is not suitable for water-limited

conditions, and it does not consider the impact of veg-

etation on LE either. In addition, the Priestley and

Taylor equation does not fully consider the impact of

atmospheric evaporative demand, that is, the impacts of

wind speed (WS) and water vapor deficit.

Some remote sensing–based models to estimate LE

are widely used (Mu et al. 2007a, 2011), but their dis-

advantages are obvious in terms of high sensitivity to

errors of input data and limited availability in different

conditions (Kalma et al. 2008; Teixeira et al. 2009a,b;

Wang and Dickinson 2012). The use of satellite-derived

surface temperature Ts for the aerodynamic tempera-

ture results in great uncertainty of surface flux estimates

in one-source models, which has been questioned

(Friedl 2002; Hall et al. 1992; Shuttleworth 1991). Two-

source models require an unbiased gradient between Ts

and surface air temperature Ta (Timmermans et al.

2007), but the uncertainty of Ts retrievals is several

kelvin (Norman et al. 2000; Wang and Liang 2008). The

Ts–vegetation space methods suffer from their key as-

sumption that LE is negatively correlated with temper-

ature (Wang et al. 2006). Therefore, some empirical

models were proposed to estimate the global LE over

different land-cover types. Take two cases as examples:

1) three suites of empirical models were proposed with

routine meteorological observations including Rn, Ta,

relative humidity (RH), diurnal temperature range

(DTR),WS, and normalized difference vegetation index

(NDVI) to obtain long-term series of LE (Wang et al.

2010, 2007; Wang and Liang 2008) and 2) the tree en-

semble model was constructed with satellite remote

sensing and surface meteorological observations to ac-

quire the temporal variance and global spatial distribu-

tion of LE (Jung et al. 2009, 2010).

There are numerous published studies on LE for its

connection of surface energy and water balance, but

studies on EF and H are many fewer. As H heats air

temperature above the surface, EF orH is more directly

relevant for climatic-change study—for example, spatial

warming contrast (Wang 2014; Wang and Zhou 2015).

Even though some land-surface models are designed to

provide EF orH, their accuracy is low (Best et al. 2015).

Despite an accurate LE estimate, uncertainty of EF orH

estimates through the energy-balance method is still

large, particularly so when H dominates the available

energy over dry regions and seasons.

Therefore, taking advantage of long-time measure-

ments from 81 ‘‘AmeriFlux’’ sites, this study explored

the biological and environmental controls on monthly

EF for different ecosystems and types of climate. On the

basis of the quantitative relationships between EF and

its controls, empirical models were further established

to estimate EF that can be widely used to estimate the

long-term variance in EF from conventional weather

observations. These will help in understanding the effect

of land–atmosphere interactions on climatic change.

2. Data and methods

a. AmeriFlux data

The AmeriFlux network is a community of sites mea-

suring ecosystem carbon, water, and energy fluxes across

America for better understanding of terrestrial ecosys-

tems in a changing world. The AmeriFlux network mea-

sures Ta, DTR, RH,WS,H, and LE at every 30 or 60min

over ;140 stations across a range of land-cover types

(Baldocchi et al. 2001). These data are publicly available

online (http://ameriflux.ornl.gov/). DTR quantifies the

difference between the daily maximum and minimum air

temperature. After quality control (see section 2b), a total

of 81 sites with data spanning over 20 months were se-

lected in this study. These sites (74 in America, 5 in

Canada, and 2 in Brazil; Fig. 1) were divided into two

groups that were each as well distributed as possible over

all of the land-cover types: one group with 43 sites (Table

1) was used to parameterize EF, and the other group with

38 sites (Table 2) was used to validate the accuracy of the

parameterizations. In this way, it makes the parameteri-

zations of EF globally applicable. The data collected at all

of the sites were used to investigate the biological and

environmental controls on EF.

The flux data at study sites were measured by an eddy

covariance (EC) system with the flux-tower height

varying from 1.5 to 60m above the ground surface. The

elevation of the selected sites ranges from 1 to over

3000m above sea level. The land-cover types include

deciduous and evergreen forest, closed shrubland,

grassland, cropland, and woody savanna (Tables 1 and

2). The climates vary from tropical and temperate to

Mediterranean and from humid to arid.

b. Quality control of the AmeriFlux data

Before releasing the data, AmeriFlux implemented

extensive quality control on them (Baldocchi et al.

2001); the data still contain outliers and erroneous re-

cords, and additional quality-control procedures were

thus implemented. The additional quality control in-

cluded the following procedures. 1) On the basis of

historical records,H and LE values over 1600Wm22 or

less than 2500Wm22 (Zahumenský 2004), Ta values

outside the range from 56.678 to 262.228C, DTR values

exceeding 39.448C, and WS values over 45ms21 were
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excluded (Cerveny et al. 2007). 2) On the basis of

physical characteristics, RH values outside the range

0%–100%were excluded. 3) Outliers beyond 5 standard

deviations s for all of the above variables were also

excluded. Chebyshev’s theorem demonstrates that this

threshold results in more than 96% of the statistically

acceptable data with any data distribution (Amidan

et al. 2005; Schmidt et al. 2011).

After quality control, when both LE and H were

available, other environmental variables were in-

terpolated using a cubic method at points with adjacent

gaps of less than 6h. The most-interpolated variable is

Ta with a ratio of 0.21% (the interpolated data length/

the whole data length used in this study). It required the

common record lengths of H, LE, Ta, NDVI, RH, and

WS to be no less than 20 months. A total of 81 sites met

the above requirements.

c. MODIS VI products

Three vegetation indices (VI) that quantify vegetation

coverage are available from Moderate Resolution Im-

aging Spectroradiometer (MODIS) satellite land prod-

ucts after 2000 (http://modis.gsfc.nasa.gov/data/): leaf

area index (LAI) from the ‘‘MOD15A2’’ dataset (ver-

sion 5) and NDVI and enhanced vegetation index (EVI)

from the ‘‘MOD13Q1’’ dataset (version 5). Some pre-

processing was done to obtain a high-quality NDVI

dataset. First, on the basis of their quality-control in-

formation, the satellite VI data collected under un-

favorable conditions (e.g., cloud and snow/ice cover)

and from water bodies were filtered. Second, for each

site, the 16-day composite data in pixels with a size of

23 2 km2 centered on the tower were composited (Xiao

et al. 2008). Third, a cubic smoothing spline was used for

interpolation (Horn and Schulz 2010) at points with

adjacent gaps of less than 1 month, and the data were

then averaged into the monthly value. After these

processes, a robust method that is based on the

Savitzky–Golay filter that was widely recommended for

smoothing out noise in NDVI time series was used to

obtain the high-quality NDVI time series. This method

is to make NDVI data approach the upper NDVI en-

velope and to reflect the changes inNDVI patterns by an

iteration process (Chen et al. 2004).

d. Land-cover and climate types

The classification of vegetation types at the study sites

followed the 17 International Geosphere–Biosphere

Programme (IGBP) land-cover types of the MODIS

land-cover product (i.e., MCD12Q1), which is publicly

available online (https://lpdaac.usgs.gov/). Details of

this land-cover product can be found in Friedl et al.

(2010). Nine different vegetation types were identified

at the study sites.

FIG. 1. Locations of the 81AmeriFlux sites used in this study. These sites were divided into two

groups for training and validating empirical methods to estimate EF; these groups were sum-

marized inTables 1 and 2, respectively. Light-green circles represent the 16 deciduous forest sites,

dark-green circles represent the 17 evergreen forest sites, blue circles represent the 14 shrubland

sites, green circles represent the 26 grassland sites, and red circles represent the 8 cropland sites.

Land-cover types in the legend are deciduous broadleaf forest (DBF), mixed forest (MF), ev-

ergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), closed shrubland (CSH),

open shrubland (OSH), grassland (GRA), woody savanna (WSA), and cropland (CRO).
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TABLE 1. A description of the AmeriFlux sites used to parameterize EF in this study. More information about the sites can be found

online (http://ameriflux.lbl.gov/AmeriFluxSites/Pages/Site-Map.aspx.) The MODIS NDVI product is the 16-day composite data. The

multiyear average values were calculated to depict the climatological behavior of the sites. IGBP land-cover types are as in Fig. 1.

Köppen–Geiger (K–G) climatic classes are as follows: the climates are arid (B), warm temperate (C), and snow (D); the precipitation is

steppe (S), fully humid (f), and summer dry (s); and the temperature is cold arid (k), hot summer (a), warm summer (b), and cool

summer (c).

Site Lat (8) Lon (8) Elev (m) IGBP K–G

H

(Wm22)

LE

(Wm22) Ta (8C) WS (m s21) RH (%) NDVI Reference

Deciduous forests

US-MOz 38.74 292.20 219.4 DBF Cfa 36.73 54.54 13.24 2.71 67.53 0.67 Gu et al. (2007)

US-Slt 39.91 274.60 30 DBF Cfa 46.19 51.77 12.48 1.91 68.26 0.70 Clark et al. (2010)

US-UMB 45.56 284.71 234 DBF Dfb 34.42 33.88 6.81 3.72 69.48 0.69 Curtis et al. (2002)

US-UMd 45.56 284.70 239 DBF Dfb 34.14 33.06 7.45 2.78 72.67 0.70 Hardiman et al. (2011)

US-WBW 35.96 284.29 343 DBF Cfa 35.31 48.58 14.72 2.18 68.39 0.66 Wilson and

Meyers (2007)

US-WCr 45.91 290.08 515 DBF Dfb 31.25 30.30 5.82 2.64 86.14 0.66 Shaw et al. (2004)

US-PFa 45.95 290.27 470 MF Dfb 22.28 33.80 6.08 3.40 75.79 0.71 Ricciuto et al. (2008)

US-Syv 46.24 289.35 540 MF Dfb 22.11 26.91 4.99 3.15 72.28 0.71 Desai et al. (2005)

Evergreen forests

US-Ho1 45.20 268.74 60 ENF Dfb 36.18 30.62 6.58 2.63 66.95 0.79 Hollinger et al. (1999)

US-Ho2 45.21 268.75 91 ENF Dfb 42.21 35.62 6.52 2.63 67.40 0.80 Hollinger et al. (2004)

US-Ho3 45.21 268.73 61 ENF Dfb 54.70 43.05 6.33 2.61 67.05 0.75 Hollinger et al. (2004)

US-NC1 35.81 276.71 5 ENF Cfa 27.74 63.67 15.65 1.87 73.58 0.75 Domec et al. (2009)

US-NC2 35.80 276.67 12 ENF Cfa 26.12 79.59 16.01 1.99 70.54 0.75 Domec et al. (2009)

US-Vcm 35.89 2106.53 3003 ENF Dfb 64.79 45.08 4.53 2.93 49.82 0.56 Molotch et al. (2009)

US-Skr 25.36 281.08 1 EBF Cwa 32.96 95.26 23.56 2.05 77.74 0.84 Barr et al. (2012)

Shrublands

CA-NS6 55.92 298.96 244 OSH Dfc 27.87 19.39 20.84 2.41 70.74 0.63 Goulden et al. (2006)

CA-NS7 56.64 299.95 297 OSH Dfc 40.18 26.46 20.87 1.39 69.37 0.58 Goulden et al. (2006)

US-Mpj 34.44 2106.24 2138 OSH BSk 75.58 28.86 10.34 3.36 44.61 0.41 Xiao et al. (2008)

US-SRC 31.91 2110.84 991 OSH BSk 57.71 23.85 20.12 2.22 49.66 0.22 Kurc and

Benton (2010)

US-Whs 31.74 2110.05 1370 OSH BSk 63.70 20.75 17.53 3.07 37.46 0.21 Scott (2010)

US-Wjs 34.43 2105.86 1926 OSH BSk 64.39 29.95 13.00 3.57 45.60 0.24 Xiao et al. (2008)

Grasslands

US-AR1 36.43 299.42 611 GRA Cfa 36.40 53.69 15.86 3.62 70.53 0.39 Billesbach (2011)

US-AR2 36.64 299.60 646 GRA BSk 44.96 35.98 15.75 4.13 69.57 0.38 Billesbach (2011)

US-ArB 35.55 298.04 424 GRA Cfa 44.36 55.27 18.20 3.81 65.66 0.51 Schmidt et al. (2011)

US-ArC 35.55 298.04 424 GRA Cfa 42.47 64.36 17.78 4.13 66.16 0.50 Schmidt et al. (2011)

US-Bkg 44.35 296.84 510 GRA Dfa 18.65 63.70 6.23 3.51 77.01 0.51 Gilmanov et al. (2005)

US-CaV 39.06 279.42 994 GRA Cfb 14.13 30.37 7.40 2.59 80.60 0.61 Hollinger et al. (2010)

US-Cop 38.09 2109.39 1520 GRA BSk 48.94 14.61 13.29 2.17 45.51 0.21 Bowling et al. (2010)

US-Dk1 35.97 279.09 168 GRA Cfa 25.08 53.45 14.99 1.55 70.37 0.72 Stoy et al. (2005)

US-FPe 48.31 2105.10 634 GRA BSk 27.86 27.60 5.10 3.12 71.88 0.32 Schmidt et al. (2011)

US-Fwf 35.45 2111.77 2270 GRA Csb 30.95 31.18 8.48 4.00 45.61 0.37 Dore et al. (2012)

US-IB2 41.84 288.24 226 GRA Dfa 17.19 51.01 9.33 2.75 72.36 0.53 Matamala et al. (2008)

US-KUT 45.00 293.19 301 GRA Dfa 3.19 41.93 6.77 2.39 66.84 0.58 Hiller et al. (2011)

US-Sdh 42.10 2101.41 1081 GRA Dsb 25.02 63.56 9.66 3.97 65.53 0.31 Billesbach (2011)

US-Seg 34.36 2106.70 1622 GRA BSk 54.25 21.31 13.27 3.01 41.23 0.18 Muldavin et al. (2008)

US-Var 38.41 2120.95 129 GRA Csa 54.15 25.03 15.72 1.33 61.80 0.51 Ma et al. (2007)

US-FR2 29.95 298.00 271.9 WSA Cfa 56.21 47.92 20.18 2.11 65.37 0.59 Schmidt et al. (2011)

US-SRM 31.82 2110.87 1116 WSA BSk 63.86 26.28 18.98 2.61 34.29 0.26 Cavanaugh

et al. (2011)

US-Ton 38.43 2120.97 177 WSA Csa 64.79 32.12 16.51 2.20 57.52 0.50 Ma et al. (2007)

Cropland

US-ARM 36.61 297.49 314 CRO Cfa 32.16 43.32 15.03 4.35 66.24 0.46 Lokupitiya

et al. (2009)

US-Br3 41.97 293.69 314 CRO Dfa 16.61 49.50 9.35 3.37 75.60 0.45 Hernandez-Ramirez

et al. (2011)

US-Ne2 41.16 296.47 362 CRO Dfa 20.90 52.13 10.18 3.45 76.72 0.50 Verma et al. (2005)

US-Ne3 41.18 296.44 363 CRO Dfa 24.43 48.14 10.19 3.50 72.49 0.49 Verma et al. (2005)
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TABLE 2. As in Table 1, but for the AmeriFlux sites used to evaluate the accuracy of the EF parameterizations in this study.

Site Lat (8) Lon (8) Elev (m) IGBP K–G H (Wm22)

LE

(Wm22) Ta (8C)
WS

(m s21)

RH

(%) NDVI Reference

Deciduous forests

US-Bar 44.06 271.29 272 DBF Dfb 35.74 36.81 7.48 1.34 74.73 0.71 Jenkins et al. (2007)

US-Bn2 63.92 2145.37 410 DBF Dsc 19.49 25.29 1.32 3.06 65.74 0.57 Liu and

Randerson (2008)

US-Chr 35.93 284.33 286 DBF Cfa 37.56 45.55 15.39 2.86 65.77 0.69 Schmidt et al. (2011)

US-Dk2 35.97 279.10 168 DBF Cfa 24.44 57.23 15.30 2.13 68.13 0.71 Stoy et al. (2005)

US-Ha1 42.54 272.17 340 DBF Dfb 32.65 37.03 8.09 2.31 73.23 0.75 Urbanski

et al. (2007)

US-MMS 39.32 286.41 275 DBF Cfa 26.65 42.30 12.37 3.57 70.63 0.68 Dragoni et al. (2007)

US-Dix 39.97 274.43 48 MF Cfa 52.51 34.70 12.45 1.93 67.56 0.66 Clark et al. (2010)

US-GMF 41.97 273.23 493 MF Dfb 34.38 30.09 7.11 2.76 73.55 0.74 Schmidt et al. (2011)

Evergreen forests

CA-NS1 55.88 298.48 253 ENF Dfc 36.56 19.56 1.77 2.57 71.68 0.66 Goulden et al. (2006)

CA-NS2 55.91 298.52 257 ENF Dfc 45.32 23.48 20.93 2.96 70.45 0.68 Goulden et al. (2006)

CA-NS5 55.86 298.49 254 ENF Dfc 27.04 23.54 21.45 1.85 72.49 0.67 Goulden et al. (2006)

US-Blk 44.16 2103.65 1718 ENF Dfb 44.81 40.14 6.54 2.41 57.17 0.66 Schmidt et al. (2011)

US-Bn1 63.89 2145.74 518 ENF Dsc 35.80 28.95 1.63 2.59 65.96 0.57 Liu and

Randerson (2008)

US-Fmf 35.14 2111.73 2160 ENF Csb 56.87 36.96 9.76 2.22 44.15 0.53 Dore et al. (2008)

US-Fuf 35.09 2111.76 2180 ENF Csb 68.68 39.35 9.01 2.55 45.38 0.57 Román et al. (2009)

US-SP2 29.76 282.24 43 ENF Cfa 42.83 71.11 19.37 1.29 76.05 0.73 Gholz and

Clark (2002)

BR-Sa1 22.86 254.96 88 EBF Am 20.22 87.85 25.97 2.16 84.44 0.87 Hutyra et al. (2008)

BR-Sa3 23.02 254.97 100 EBF Am 23.40 100.04 25.87 2.21 74.63 0.86 Hutyra et al. (2008)

Shrublands

US-Bn3 63.92 2145.75 469 OSH Dsc 20.65 23.58 2.12 2.80 64.13 0.52 Liu and

Randerson (2008)

US-ICt 68.61 2149.30 930 OSH ET 24.14 32.91 2.52 2.53 71.23 0.57 Euskirchen

et al. (2007)

US-Ses 34.33 2106.74 1593 OSH BSk 55.77 20.43 14.34 2.68 39.58 0.18 Muldavin

et al. (2008)

US-Ced 39.84 274.38 58 CSH Cfa 41.99 53.89 12.48 2.17 69.25 0.69 Clark et al. (2009)

US-KS2 28.61 280.67 6 CSH Cfa 37.81 69.82 22.21 1.94 77.71 0.64 Powell et al. (2008)

US-Los 46.08 289.98 480 CSH Dfb 25.81 25.42 3.02 2.68 70.83 0.67 Sulman et al. (2009)

US-SO2 33.37 2116.62 1394 CSH Csa 94.83 32.04 14.32 2.19 44.77 0.41 Luo et al. (2007)

US-SO4 33.38 2116.64 1394 CSH Csa 95.51 28.72 14.80 2.06 44.75 0.41 Luo et al. (2007)

Grasslands

US-Aud 31.59 2110.51 1469 GRA BSk 53.19 22.25 16.25 2.58 46.32 0.25 Wilson and

Meyers (2007)

US-Ctn 43.95 2101.85 744 GRA BSk 39.25 45.50 9.33 4.09 62.82 0.34 Schmidt et al. (2011)

US-Dia 37.68 2121.53 323 GRA csa 41.89 18.18 16.01 2.99 51.72 0.36 van Gorsel

et al. (2009)

US-Goo 34.25 289.77 87 GRA Cfa 26.73 57.01 16.66 1.67 80.28 0.67 Wilson and

Meyers (2007)

US-KFS 39.06 295.19 333 GRA Cfa 22.39 47.21 13.61 2.80 70.46 0.56 Brunsell et al. (2008)

US-Kon 39.08 296.56 443 GRA Cfa 21.55 46.29 14.32 3.95 67.21 0.49 Brunsell et al. (2008)

US-Wkg 31.74 2109.94 1531 GRA BSk 58.92 20.91 17.37 3.80 35.17 0.22 Krishnan

et al. (2012)

US-Wlr 37.52 296.86 408 GRA Cfa 28.04 51.98 13.60 3.46 68.40 0.47 Jastrow et al. (2000)

Cropland

US-Bo1 40.01 288.29 219 CRO Dfa 26.76 50.40 11.14 4.37 79.59 0.45 Hollinger

et al. (2005)

US-Bo2 40.01 288.29 219.3 CRO Dfa 27.24 40.58 12.85 3.16 70.82 0.46 Meyers and

Hollinger (2004)

US-Br1 41.69 293.69 275 CRO Dfa 18.84 51.66 9.07 3.44 75.84 0.60 Hernandez-Ramirez

et al. (2011)

US-IB1 41.86 288.22 225 CRO Dfa 21.11 51.60 9.85 3.10 72.39 0.50 Matamala

et al. (2008)
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Theworldmap of the Köppen–Geiger classification of

climate, which displays 31 types of climate at a resolu-

tion of 0.58 3 0.58 on the basis of temperature and pre-

cipitation observations for the period of 1951–2000

(Kottek et al. 2006), was used to extract the climatic

information for each site (Tables 1 and 2). The usable

digital map is provided freely online (http://koeppen-

geiger.vu-wien.ac.at/).

e. Calculation of monthly EF

Although the ECmethod suffers an important issue of

energy imbalance, that is, the sum of LE and H is not

equal to Rn 2 G, most applications and correction

methods assume that the Bowen ratio is kept for the EC

method (Twine et al. 2000; Wang and Dickinson 2012;

Wilson et al. 2002). Under this assumption, EF is in-

dependent of the energy-closure problem and does not

need correction. Monthly EF here is obtained to esti-

mate the long-term variance of EF, which not only

avoids the effect of the average error from daily to

monthly EF but also makes the following parameteri-

zations (in section 3b) globally applicable because most

climatic datasets—for example, those used as input

data for the parameterization—are only available at

monthly scale.

Unlike the sinusoidal variation in available energy

(LE plusH), the EF remains almost constant during the

daytimeunder fair-weather conditions (Fig. 2) (Brutsaert and

Sugita 1992; Crago 1996; Gentine et al. 2007; Nichols

and Cuenca 1993) and isolates soil and plant moisture

resistances to energy partitioning. Existing studies in-

dicate that EF has a diurnal U-shaped pattern that is

partly due to the diurnal variation in RH or WS

(Gentine et al. 2011, 2007; Lhomme and Elguero 1999).

Further studies show that in the early morning and

late afternoon the fraction of diffuse solar radiation to

total solar radiation is higher and diffuse solar radia-

tion is more efficiently absorbed by vegetation for

photosynthesis, resulting in a higher EF (Wang et al.

2008). This is similar to the results of Smith et al.

(1992) that show that cloudiness induces significant

variance in the energy budget to control the EF. In

addition, the values of LE andH in the night are small

enough to be ignored. Therefore, this study focuses on

the biological and environmental controls on monthly

daytime EF. Monthly daytime EF is calculated with

(Peng et al. 2013)

EF5

ðsunset
sunrise

LE
t,monthlymean

(t) dt

ðsunset
sunrise

[H
t,monthlymean

(t)1LE
t,monthlymean

(t)] dt

, (2)

where sunset and sunrise, expressed as local time, can

be calculated as a function of site latitude, month, and

FIG. 2. The diurnal cycle of available energy (H plus LE), LE, and EF during the daytime at

theUS-NC1 site (35.818N, 76.718W; land-cover type: evergreen needleleaf forest). The red dots

are calculated by the fluxes at moment t, demonstrating little variance in daytimeEF. The black

dashed line is a daytime mean (0.75) calculated from the summation of monthly diurnal fluxes

[i.e., Eq. (2)].
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day (available online at http://herbert.gandraxa.com/

length_of_day.xml), ensuring a restrained variation in

EF and a positive available energy; LEt,monthlymean and

Ht,monthlymean are the monthly means of instantaneous

LE and H, respectively, at time t. The EF ranges from

0 to 1. An EF value of 0.0 indicates a very dry surface

(e.g., dry desert) with no evapotranspiration from soils

and plants, and an EF value of 1.0 indicates a very wet

(e.g., water body) or highly vegetated surface. In addi-

tion, the monthly means of all other variables were

calculated by averaging the monthly diurnal cycles.

f. Partial correlation analysis

To identify further the impacts of individual param-

eters on monthly EF, a partial correlation analysis was

applied to statistically remove the effect of other factors

(Cohen et al. 2013); partial correlation coefficients r at a

significance level p of 0.05 were used. To parameterize

the monthly EF, a stepwise-regression model was ap-

plied at a p of 0.05 for entry and 0.1 for removal to avoid

collinearity with in-model variables at a p of 0.1

(Montgomery et al. 2012). A stepwise regression is a

systematic method for adding and removing terms from a

multilinear model on the basis of their statistical signifi-

cance in a regression. At each step, the p value of an F

statistic is computed to test models with and without a

potential variable. The model proceeds as follows:

1) Fit the initial model with themost explanatory power

variable.

2) If any variables not in the model have p values of less

than 0.05 (forward selection), add the one with the

smallest p value and repeat this step; otherwise, go to

step 3.

3) If any variables in the model have p values greater

than 0.1 (backward elimination), remove the one

with the largest p value and go to step 2;

otherwise, end.

After these three steps, no more variables can be en-

tered and removed. To quantify the collinearity of in-

model variables, the variance inflation factor (VIF) is

recommended as a criterion, and its value in excess of 10

is a threshold for an unreliable regression (Chatterjee

and Price 1977). Also, the correlation coefficient r at a p

of 0.05 and root-mean-square error (RMSE) were used

to evaluate the accuracy of fitting and parameterization

of monthly EF.

g. Selection of determining variables

The LE is strongly controlled by vegetation-growth

demand, atmospheric demand, and water supply (Bucci

et al. 2008; Chang et al. 2006; Hu et al. 2009; Maximov

et al. 2008; Monteith 1965; Saugier et al. 1997; Si et al.

2007; Tanaka et al. 2008; Wang et al. 2010, 2007; Wang

and Liang 2008; Zha et al. 2010), including rc, VI, RH,

Rn, Ta, vapor pressure deficit, WS, and soil moisture

(SM). On the basis of the physical simplification of EF,

standardized by its definition of EF 5 LE/(Rn 2 G)

(Wang and Liang 2009; Wang et al. 2010), the relation-

ships between EF and vegetation demand (expressed by

VI), atmospheric demand (expressed by Ta, DTR, and

WS), and water supply (expressed by SM or RH) were

investigated. These factors are as independent as pos-

sible and have specific physical meanings.

Three similar temperature measurements are avail-

able: the maximum air temperature Tmax, minimum air

temperature Tmin, and daily mean air temperature. The

correlation between EF and Tmin is slightly better than

those of EF with Tmax and averaged air temperature at

monthly scale, likely because Tmin may control re-

spiratory enzyme activity. The Tmin data have been

widely collected at weather stations and are easily ac-

cessible; therefore, Tmin was analyzed in this study.

Similarly, the partial correlation between EF and NDVI

is a little better than those of EF with EVI and LAI. The

availability of NDVI is much higher than that of EVI

and LAI; therefore, the results using the NDVI are re-

ported in this study.

In developing the equations to calculate EF and based

on the findings mentioned in section 3a, the 81 sites were

divided into five categories: deciduous forests, ever-

green forests, shrublands, grasslands, and cropland. An

empirical equation was created for each category with

climatic parameters (Tmin, DTR, WS, RH) and satellite

vegetation index (NDVI) as input data. It is found that

the equations derived from such a process can well re-

flect the impacts of land-cover types and climates on EF

(section 3b).

3. Results

a. Biological and environmental controls on monthly
EF

The analyses in this section aim to identify the re-

lationships between EF and biological/environmental

parameters but cannot determine the causes or results.

These relationships can actually be a mixture of cause

and result. Such analyses at daily and monthly scales

were conducted, and similar conclusions were derived.

To coordinate with the following parameterizations of

monthly EF for its long-term variance, the results at

monthly scale are reported here.

Figure 3 shows the typical scatterplots of monthly

EF against monthly Tmin, NDVI, RH, DTR, and WS

for deciduous forests, evergreen forests, shrublands,
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grasslands, and cropland sites. In general, vegetation

influences water and heat exchange through bio-

physical and ecophysiological responses to different

environmental conditions. In different ecosystems and

climates, the magnitude and mode of these responses

are obviously inconsistent (Wang and Dickinson 2012).

With the exception of cropland (Fig. 3e1), monthly EF

increases linearly with Tmin; the different result for

cropland is partly due to agricultural management (e.g.,

irrigation during seeding periods). The NDVI loses its

sensitivity to vegetation coverage when vegetation is

dense (Wang et al. 2010); thus, monthly EF increases

at a greater rate at high NDVI than at low NDVI in

deciduous forests (Fig. 3a2). Because of crop growth

and transpiration demand, monthly EF increases line-

arly with NDVI in cropland sites with high NDVI,

whereas significant soil evaporation may contribute to

the high monthly EF when the NDVI is low (Fig. 3e2)

in the seeding period.

MonthlyEFagreeswell withRH(Figs. 3a3,b3,c3,d3,e3),

which represents impacts of surface aridity (or soil

moisture) and water vapor deficit on LE. The DTR is

negatively related to monthly EF because as the amount

of energy heating Earth’s surface increases it makes

Tmax high and then DTR large, and thus energy con-

sumption by LE decreases; consequently, monthly EF

decreases (Figs. 3a4,b4,c4,d4,e4). DTR also is closely

related to surface aridity or soil moisture (Mu et al.

2007b; Wang and Liang 2008).

The monthly EF values over forests and grasslands

have different responses to WS. To be specific, monthly

EF negatively correlates with WS over deciduous and

evergreen forests but positively correlates over shrub-

lands, grasslands, and cropland (Figs. 3a5,b5,c5,d5,e5).

This opposite correlation over different land-cover

types results from the complicated effects of WS on

LE (e.g., transpiration) and H through the intricate

impacts of WS on the aerodynamic resistance, leaf

FIG. 3. Scatterplots of monthly EF against Tmin, NDVI, RH, DTR, and WS for the example sites US-Dk2 (35.978N, 79.108W), US-Ho1

(45.208N, 68.748W), US-Ced (39.848N, 74.388W), US-ArB (35.558N, 98.048W), andUS-IB1 (41.868N, 88.228W), representing the five land-

cover types of deciduous forests, evergreen forests, shrublands, grasslands, and cropland, respectively. The red, green, blue, black, and

cyan dots represent the relationships of monthly EF with Tmin, NDVI, RH, DTR, and WS, respectively. The corresponding correlation

coefficient is shown at the bottom right of each panel.
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boundary layer resistance, and stomatal resistance

(Dixon and Grace 1984; Gutiérrez et al. 1994). The

stomatal resistance increases by;40% with an increase

of ;0.7–4.7m s21 in WS in a mixed broadleaved de-

ciduous forest (Kim et al. 2014), whereas the aero-

dynamic resistance decreases in forests and grasslands;

thus, the EF decreases more dramatically withWS in the

forest region. Lei et al. (2010) reported that WS accel-

erates the transpiration of Artemisia ordosica (a shrub)

in the Tengger Desert of China. Therefore, the re-

lationship between EF and WS depends on the aero-

dynamic resistance and rc to thermal and vapor transfer.

In all, the aerodynamic resistance decreases with in-

creasingWS as based on theMOST, and the rc increases

with increasingWS as based on the rearranged Penman–

Monteith equation.

Figure 4 displays the partial correlation coefficients

r of monthly EF with Tmin, NDVI, RH,DTR, andWS at

all of the sites. In comparing the results over each land-

cover type shown in Fig. 4 with each other and trying our

best to merge different land-cover types into a class, the

study sites were divided into five categories: deciduous

forests, evergreen forests, shrublands, grasslands, and

cropland. Strong relationships are observed between

monthly EF and Tmin, NDVI, and RH in deciduous

forests, with site-averaged r values of 0.53, 0.52, and 0.46

(p , 0.05), respectively (Fig. 4). When compared with

deciduous forests, stronger relationships are found be-

tween monthly EF and Tmin and NDVI in evergreen

forests, with site-averaged r values of 0.65 and 0.51 (p,
0.05), respectively.Monthly EF is less sensitive to NDVI

in evergreen forests because of the low perennial vari-

ance of NDVI. Similarly, Tmin, RH, NDVI, and WS

mainly control monthly EF in shrublands, with site-

averaged r values of 0.53, 0.50, 0.42, and 20.37 (p ,
0.05), respectively. The strongest correlation of monthly

EF with NDVI occurs in grasslands, with a site-averaged

r of 0.66 (p , 0.05); similar relationships among RH,

Tmin, DTR, and WS and monthly EF are observed

for grasslands, with site-averaged r values of 0.46,

0.44, 20.40, and 0.36 ( p , 0.05), respectively. Because

of the efficient use of water and energy by agricultural

FIG. 4. The partial correlation coefficients of monthly EF with (a) Tmin, (b) NDVI, (c) RH, (d) DTR, and (e)WS

for the five vegetation classes (deciduous forests, evergreen forests, shrublands, grasslands, and cropland). The

white bar represents a partial correlation that does not pass the t test at a significance level of 0.05, and the bars with

other colors pass that test. Each bar in the figure represents one station in Tables 1 and 2.
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management, NDVI,WS,Tmin, RH, andDTRhave very

similar relationships with monthly EF in cropland, with

site-averaged r values of 0.42, 0.36, 0.35, 0.33, and20.27

(p , 0.05), respectively.

Figure 5 demonstrates the maximum explanation of

monthly EF by the most explanatory power variable in-

dependently. The explanatory variance of monthly EF is

defined by the square of partial correlation coefficient of

monthly EF with Tmin, NDVI, RH, DTR, and WS,

ranging from0 to 1.NDVI,Tmin, andRHaremain factors

over different land-cover types, as indicated by the green,

red, and blue bars, respectively (Fig. 5). The maximum

variances of monthly EF explained by NDVI, Tmin, and

RH are 0.83, 0.72, and 0.71, respectively, and their means

TABLE 3. The fitted coefficients in Eq. (3) for five categories on a monthly scale are calculated by stepwise-regression models with the

sites in Table 1. The correlation coefficients r and RMSE values between the measured and fitted EFs are listed. The multicollinearities

among the predictor variables are evaluated by theVIF.AVIF in excess of 10 is suggested to be a criterion for an unreliable regression.An

em dash indicates that this parameter does not enter the model.

Site type a0 a1 a2 a3 a4 a5 r RMSE VIF

Deciduous forests 20.3459 0.0147 0.5385 0.0041 — — 0.919 0.089 3.55

Evergreen forests 0.0121 0.0169 — 0.0045 — — 0.886 0.1003 1.28

Shrublands 20.2791 0.0086 0.1818 0.0071 — 0.0254 0.877 0.0715 3.76

Grasslands 20.0669 0.0036 0.6062 0.0044 20.0171 0.0511 0.809 0.1358 2.60

Cropland 20.1142 0.0038 0.6848 0.0078 20.0308 0.0266 0.801 0.1142 3.36

FIG. 5. The most explanatory power variable at each site is shown as a bar graph with the square of spatial correlation coefficient of

monthly EF with this variable at a significance level of 0.05, on a base map of the IGBP land-cover types (MCD12Q1; 2007). IGBP types:

barren or sparsely vegetated (BSV), snow ice (SNI), cropland/natural vegetation mosaics (CVM), cropland (CRO), wetland (WET),

grassland (GRA), savanna (SAV), woody savanna (WSA), open shrubland (OSH), closed shrubland (CSH), mixed forest (MF), de-

ciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf forest

(ENF), and water body (WB). Data collected at all sites in Tables 1 and 2 are shown.
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are 0.31, 0.29, and 0.23, respectively. To be more specific,

0.45 of the variance of EF can be explained by NDVI in

grasslands, whereas this value is only 0.22 in forests. In

contrast, Tmin can explain 0.35 of the variance in EF in

forests but only 0.20 of the variance of EF in grasslands.

b. Empirical methods to estimate monthly EF and
their validation

The partial correlation analysis of EF against the

above factors reveals that Tmin, NDVI, RH, DTR, and

WS are the main factors that control monthly EF in

different ecosystems. On a monthly scale, EF is fitted by

stepwise-regression models with Eq. (3):

EF5 a
0
1 a

1
T
min

1 a
2
NDVI1 a

3
RH1 a

4
DTR1 a

5
WS,

(3)

where ai (i5 0, 1, . . . , 5) is the fitted coefficient and EF is

the fitting/predicted evaporative fraction.

The fitting coefficients are listed in Table 3 and are

in agreement with the above correlation analysis

FIG. 6. The scatterplots of fitting results for (a) deciduous forests including deciduous

broadleaf forests and mixed forest, (b) evergreen forests including evergreen broadleaf forest

and evergreen needleleaf forest, (c) shrublands including closed shrubland and open shrubland,

(d) grasslands including grassland and woody savanna, and (e) cropland. Using the data col-

lected at sites in Table 1, the monthly EF is fitted by the stepwise-regression model [Eq. (3)].

The correlation coefficient r and RMSE are listed in each panel.
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(section 3b). The scatterplots of the fitting results are

shown in Fig. 6. For Eq. (3), the r values range from

0.80 to 0.92, and the RMSE values range from 0.07 to

0.14 for five categories. The vegetation growth has a

larger impact on the EF over the deciduous forests,

grasslands, and cropland than over evergreen forests

and shrublands by comparison of the equation co-

efficients of NDVI. Moreover, WS acts to obviously

promote LE for short vegetation, such as shrublands,

grasslands, and cropland. The VIF that is recom-

mended to evaluate the multicollinearity among

the predictors with a threshold of 10 (Chatterjee

and Price 1977) indicates that the fitting equations

are reliable regression over five vegetation classes

(Table 3).

Figures 7 and 8 illustrate the validation results for

each site over deciduous forests, evergreen forests,

shrublands, grasslands, and cropland (listed in Table

2). The predicted monthly EF values are in good

agreement with the measured monthly EF values over

five categories (Fig. 7). The r values between predicted

and measured monthly EF range from 0.80 to 0.93, and

the RMSE values range from 0.09 to 0.12 for five cat-

egories (Fig. 8). These results show that the equations

for EF can be used to accurately estimate the long-

term variance in EF from conventional weather

FIG. 7. Similar to Fig. 6, but for the validation results (comparison of measured and predicted

monthlyEF).Using the data collected at sites in Table 2, the predictedmonthlyEF is calculated

with Eq. (3).
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observations and NDVI, which are measured and

available globally.

4. Conclusions and discussion

The objectives of this study are to identify the various

factors that control monthly EF for different land-cover

types and climates and to further parameterize monthly

EF. Through partial correlation analyses of EF with

relevant factors at 81 sites, the factors controlling

monthly EF at different vegetation classes are de-

termined as follows:

1) Positive correlations of monthly EF with Tmin,

NDVI, and RH are found for all sites, whereas the

effect ofWS andDTR onmonthly EF is complicated

and depends on land-cover type.

2) For deciduous forest sites, Tmin, NDVI, and RH are

the threemain controlling factors onmonthly EF and

have a saturation effect at high NDVI. For evergreen

forests, Tmin and RH are the main controls. For

shrubland sites, Tmin, RH, NDVI, and WS mainly

control monthly EF. For grasslands, NDVI has the

best correlation with monthly EF, whereas RH, Tmin,

DTR, and WS all have similar relationships with

monthly EF. Because of agricultural management,

NDVI, WS, Tmin, RH, and DTR contribute almost

equally to the control of monthly EF.

In summary, the interactions between biological and

environmental factors have a combined effect on

monthly EF. Monthly EF can be estimated by stepwise-

multiple-regression models f(NDVI, Tmin, DTR, RH,WS),

with r ranging from 0.80 to 0.92 and RMSE ranging from

0.07 to 0.14 for five categories. Model validation by

comparison of predicted and observed monthly EF

values indicates that the stepwise-multiple-regression

models have good results.

Because Ta, WS, and RH are measured with high

frequency at globally distributed stations and because

NDVI can be acquired with remotely sensed data, these

equations can be used to monitor global ecosystem dy-

namics and detect long-term trends in EF. Another ad-

vantage of these linear equations is that they are

insensitive to errors of input data, unlike the nonlinear

relationship of aerodynamic resistance with the envi-

ronmental parameters in one- and two-source models.

This study provides a preliminary study on methods to

calculate EF, which is of great importance for climatic

studies. High precision of parameterization is still a

challenge in accurately estimating EF, and further study

is needed. In addition, to obtain the global EF over all

land-cover types, some effort is beingmade to collect the

relevant data for further validation or even for

developing a model of EF over the other land-cover

types that were not involved in this study.
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